ISO/IEC GUIDE 25 / ISO 9000 LABORATORY STANDARDS

American Chemical Society (ACS)

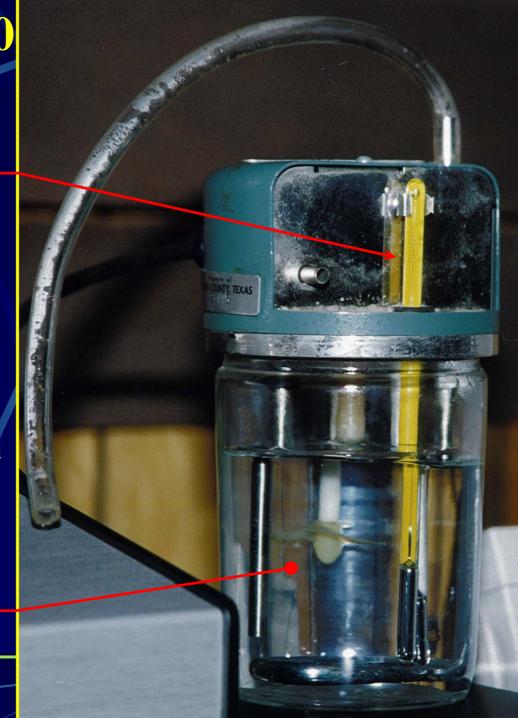
LABORATORY ACCREDITATION

National Academy of Sciences National Institute of Standards and Technology (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) American Society of Crime Laboratory Directors (ASCLD) American Association For Laboratory Accreditation (A2LA)

Intoxilyzer® 5000 ACCREDITATION?

- National Academy of Sciences
- National Institute of Standards and Technology (NIST)
- National Voluntary Laboratory Accreditation Program (NVLAP)
- Society of Forensic Toxicologists, Inc. (SOFT)
- American Academy of Forensic Sciences, Toxicology Section (AAFS)
- American Chemical Society (ACS) Analytical Division
- Association of Analytical Chemists (ANACHEM)
- ☐ Instrument Society of America, Analysis Division
- Royal Society of Chemistry (RSC) Analytical Division
- Society for Applied Spectroscopy (SAS)
- American Board of Forensic Toxicology (ABFT)
- National Forensic Science Technology Center (NFSTC)
- National Association of Medical Examiners (NAME)
- American Society of Crime Laboratory Directors (ASCLD)

INTOXILYZER 5000


Reference Test Sample Mark IIA Simulator

Analog Thermometer $34^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$

TDPS Breath Alcohol Testing Regulations 19.1(b) (3):

The instrument shall analyze a reference sample, such as headspace gas from a mixture of water and a known weight of alcohol held at a constant temperature, the result of which must agree with the reference sample predicted value within $\pm 0.01 \text{g}/210 \text{L}$ or such limits as set by the scientific director.

Reference Test Solution 0.1g/210L ± 0.01g/210L

ETHANOL SIMULATOR SOLUTIONS

ALCOHOL

- ACS Grade Absolute Ethanol
- Reagent Grade Ethanol
- Traceable to NIST SRM 1828a

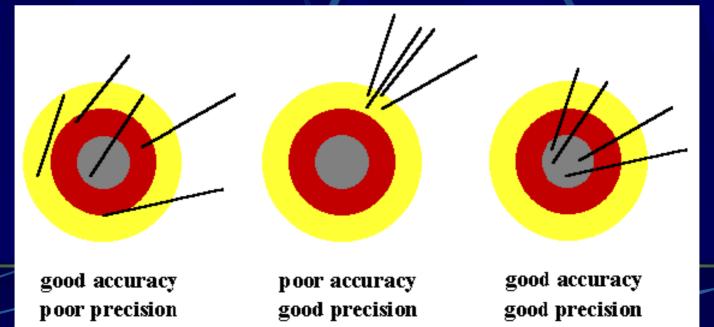
WATER

- o Type 1 Laboratory Water
- o 18 Megohms resistance
- o Chemically pure & free of microorganisms

MASS MEASUREMENTS

• Standard laboratory analytical balance, sensitive to 0.01mg. The calibration of the balance is routinely verified by an independent analytical balance service using NIST – traceable mass standards.

Accuracy & Precision


Accuracy

The accuracy of an analytical measurement is how close a result comes to the true value. Determining the accuracy of a measurement usually requires calibration of the analytical method with a known <u>standard</u>.

Precision

Precision is the reproducibility of multiple measurements and is usually described by the standard deviation, standard error, or confidence


interval.

Henry's Law

The solubility of a gas in a liquid is proportional to the pressure of the gas over the solution.

Above is the general definition of Henry's law. It's a commonly applied tool in physical chemistry. From it you can derive the following formula:

 $1./c \propto P$

$$2. c = kP$$

Where c is the molar concentration (mol/L) of the dissolved gas and P is the pressure (in atm) of the gas over the solution. k for a given gas is the *Henry's Law constant* dependent only of temperature.

Beer-Lambert Law

- Where A is absorbance (no units, since $A = log_{10} P_0 / P$)
- e is the molar absorbtivity with units of L mol⁻¹ cm⁻¹
- b is the path length of the sample that is, the path length of the cuvette in which the sample is contained measured in centimeters.
- c is the concentration of the compound in solution, expressed in mol L-1

Absorbance is directly proportional to the other parameters, as long as the law is obeyed.

Combined Gas Law

The combined gas law states that for a given mass of gas, the volume is inversely proportional to the pressure and directly proportional to the absolute temperature.

$$\frac{\mathbf{P}_{\underline{1}}\mathbf{V}_{\underline{1}}}{\mathbf{T}_{\underline{1}}} = \frac{\mathbf{P}_{\underline{2}}\mathbf{V}_{\underline{2}}}{\mathbf{T}_{\underline{2}}}$$

 P_1 is the original pressure, V_1 is the original volume, T_1 is the original absolute temperature, P_2 is the new pressure, V_2 is the new volume, and T_2 is the new absolute temperature.